Fabrication of Multi-functionalized Graphene Oxide Doped Alginate Hybrid Spheres for Enhanced Fluoride Adsorption

نویسندگان

چکیده

In this current study, aminated graphene oxide (AGO) doped on alginate (Alg) matrix offers AGO@Alg hybrid spheres was developed to investigate its potential for retention of fluoride from water. The sophisticated characterization methods likely TGA, SEM, XPS and FTIR studies were attained recognize physicochemical properties like thermal stability, morphology, elemental binding energy functional groups determination. responsible parameters adsorption optimized under a batch mode achieve improve defluoridation capacity (DC). follow the electrostatic interaction mechanism removal. isotherms (Langmuir, Temkin, Dubinin–Radushkevich (D–R) Fruendlich models), kinetics (reaction diffusion based models) thermodynamic (ΔS°, ΔG° ΔH°) investigated at 303, 313 323 K. To minimize cost-effectiveness reusability test carried out. suitability also analyzed contaminated field sample taken prevalent village.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced electrical conductivity properties of Graphene Oxide nanocomposites functionalized with Polyvinyl Alcohol

We report the synthesized and preparation of graphene oxide (GO) nanocomposite functionalized with polyvinyl alcohol (PVA) with different concentration of graphene oxide 0, 1, 1.5, 2, 2.5, 3, 3.5 and 4% weight. This synthesized confirmed by FT-IR. The electrical conductivity of the all nanocomposite was measured at 25°C for all samples and the resulted showed electrical conductivity ...

متن کامل

Enhanced electrical conductivity properties of Graphene Oxide nanocomposites functionalized with Polyvinyl Alcohol

We report the synthesized and preparation of graphene oxide (GO) nanocomposite functionalized with polyvinyl alcohol (PVA) with different concentration of graphene oxide 0, 1, 1.5, 2, 2.5, 3, 3.5 and 4% weight. This synthesized confirmed by FT-IR. The electrical conductivity of the all nanocomposite was measured at 25°C for all samples and the resulted showed electrical conductivity ...

متن کامل

Functionalized Graphene Oxide/Polyacrylonitrile Nanofibrous Composite: Pb2+ and Cd2+ Cations Adsorption

In this research, graphene oxide (GO) was functionalized by tannic acid to produce GO-TA and fabricate a novel functionalized graphene oxide/ polyacrylonitrile (PAN) nanofibrous as an adsorbent in order to remove two hazardous heavy metals from aqueous solutions. The results showed that the composite adsorbent can properly adsorb Pb2+ and Cd2+ metal cations, due to having the numerous potential...

متن کامل

enhanced electrical conductivity properties of graphene oxide nanocomposites functionalized with polyvinyl alcohol

we report the synthesized and preparation of graphene oxide (go) nanocomposite functionalized with polyvinyl alcohol (pva) with different concentration of graphene oxide 0, 1, 1.5, 2, 2.5, 3, 3.5 and 4% weight. this synthesized confirmed by ft-ir. the electrical conductivity of the all nanocomposite was measured at 25°c for all samples and the resulted showed electrical conductivity was increas...

متن کامل

Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation

Magnetic water-soluble hyperbranched polyol functionalized graphene oxide nanocomposite (MWHPO-GO) was successfully prepared and applied to water remediation in this paper. MWHPO-GO was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetization curve, zeta potential, scanning electron microscope (SEM) and transmissio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inorganic and Organometallic Polymers and Materials

سال: 2021

ISSN: ['1574-1451', '1574-1443']

DOI: https://doi.org/10.1007/s10904-021-02163-2